A novel system for non-invasive gaze measurement

Eunji Chong, James M. Rehg Georgia Tech

Expeditions in Computing

1. Overview

a. Gaze behavior and autism

Children with autism tend to avoid looking into another person's eyes

b. Corneal Reflections The environment around us reflects in our eyes

2. Limitations of Existing Systems

- a. Monitor-based
 - : Restriction on movement
 - : Unnaturalistic
 - : Not interactive
- b. Wearable
 - : Body attached devices
 - : Distracting, safety hazard
- c. System errors
 - : Calibration error
 - : Geometric error
- : Parallax error

calibration plane

3. Proposed Solution

- * We propose a new camera system to measure a person's gaze behavior in naturalistic settings through direct corneal image analysis.
- * It should be portable, easy to set up on the floor or a table.
- * It creates eve video (+ PoG) for psychologists to watch and examine.

4. System Design

Background Autofocus Loop: Measure subject's movement in terms of depth

Face Detection: Determine eve location and size Camera Selection: Select subset of narrow-view cameras

Eve localization: Crop the eyes in highresolution image

Image Enhancement: Histogram equalization Video Stabilization

Point of Regard Estimation: 3D eye pose estimation by ellipse fitting

5. Work in Progress

- a. System evaluation
- b. Experiments with adults
- c. More compact prototype development
- d. Study with children

References

1.a, 2.a Babylab, Oxford University 1.a Brendon Nacewicz, University of Wisconsin-Madison 2.b Positive Science Eyetracker 2.b Wearcam, EPFL